The Effects of Fire Severity on Macroinvertebrate Detritivores and Leaf Litter Decomposition
نویسندگان
چکیده
High severity wildfire events are a feature of forests globally and are likely to be more prevalent with climate change. As a disturbance process, fire has the potential to change important ecological functions, such as decomposition, through its impact on biodiversity. Despite the recognised importance of decomposition in terms of fuel loads and energy flow, little is known about the post-fire effects of fire severity on decomposition by litter-dwelling macroinvertebrate detritivores. We tested the hypotheses that: 1) increasing fire severity is associated with decreased rates of leaf litter decomposition by macroinvertebrate detritivores; and 2) the abundance and biomass of macroinvertebrate detritivores decreases with increasing fire severity, while body size increases. We used a litterbag experiment at long-unburnt, ground-burnt and crown-burnt sites (n = 7 for all treatments) to test the effect of fire severity on: a) macroinvertebrate-driven break-down of litter fuel loads; and b) the size and abundance of macroinvertebrate detritivores three years after fire. Microhabitat conditions differed among fire severity classes. Macroinvertebrate exclusion reduced litter decomposition by 34.7%. Macroinvertebrate detritivores were larger and less abundant following higher severity fires, possibly as a result of fire-induced changes in habitat structure. Opposing effects of fire severity on macroinvertebrate abundance and body size resulted in both similar detritivore biomass and, most interestingly, no differences in leaf litter decomposition under different fire severities. This suggests that the diversity of macroinvertebrates enhances functional resilience of litter decomposition to fire and that litter-breakdown is not inhibited within three years following a high severity fire in this forest type and where recolonisation sources are readily available. We found no support for the hypothesis that high severity fires reduce litter decomposition and therefore increase the likelihood of future fires.
منابع مشابه
Effects of Elevated CO2 on Litter Chemistry and Subsequent Invertebrate Detritivore Feeding Responses
Elevated atmospheric CO2 can change foliar tissue chemistry. This alters leaf litter palatability to macroinvertebrate detritivores with consequences for decomposition, nutrient turnover, and food-web structure. Currently there is no consensus on the link between CO2 enrichment, litter chemistry, and macroinvertebrate-mediated leaf decomposition. To identify any unifying mechanisms, we presente...
متن کاملAlteration of leaf decomposition in copper-contaminated freshwater mesocosms.
The influence of copper on leaf litter decomposition was examined in experimental streams. Controls and three levels of contamination (5, 25, and 75 microg/L) were tested in triplicate in 20-m-long mesocosms. Equal quantities of alder, maple, and oak leaves were enclosed in mesh bags and placed in the upper and lower mesocosm sections that exhibited different habitat characteristics (shallow wi...
متن کاملEffects of a triazole fungicide and a pyrethroid insecticide on the decomposition of leaves in the presence or absence of macroinvertebrate shredders.
Previously, laboratory experiments have revealed that freely diluted azole fungicides potentiate the direct toxic effect of pyrethroid insecticides on Daphnia magna. More ecologically relevant exposure scenarios where pesticides are adsorbed have not been addressed. In this study we exposed beech leaves (Fagus sylvatica) to the azole fungicide propiconazole (50 or 500 μg L(-1)), the pyrethroid ...
متن کاملThe effects of eucalypt plantations on plant litter decomposition and macroinvertebrate communities in Iberian streams
Eucalypt plantations cover over 1.5 million ha in the Iberian Peninsula. The effects of the replacement of native deciduous forests by exotic plantations on stream communities and litter decomposition, a key ecosystem process in forest streams, are poorly understood. We compared microbially driven and total (microbes + invertebrates) decomposition of alder and oak leaf litter (high and low qual...
متن کاملLeaf decomposition and invertebrate colonization responses to manipulated litter quantity in streams
Resource availability is an important ecosystem attribute that can influence species distributions and ecosystem processes. We manipulated the quantity of leaf litter, a critical resource in streams, in a replicated field experiment to test whether: 1) greater litter quantity promotes microbial leaf decomposition (through greater microbial inoculum potential), and 2) reduced litter quantity enh...
متن کامل